Given:
There are given that the area of the shaded circular sector is:
![30\pi](https://img.qammunity.org/2023/formulas/mathematics/high-school/pgbzyssj95me6t5dcr0evmql1w4jn6ea2k.png)
Step-by-step explanation:
To find the central angle, we need to use the formula of area of the sector:;
So,
From the formula of area of the sector:
![Area\text{ of sector=}\frac{central\text{ angle}}{360^(\circ)}*\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/dsvffri7vyntvtbcouoo1btqh5ssjrr33o.png)
Then,
Put the value of area and radius into the above formula;
So,
![\begin{gathered} Area\text{ of sector=}\frac{central\text{ angle}}{360^{^(\circ)}}*\pi r^2 \\ 30\pi=(centralangle)/(360)\pi*(10)^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cg1ktu3b5oeb5nn7waspklqiu6irxvk0wd.png)
Then,
![\begin{gathered} 30\pi=(centralangle)/(360)\pi(10)^(2) \\ 3=(centralangle)/(36) \\ central\text{ angle=36}*3 \\ central\text{ angle=108}^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i1n9dyqt31rnoenbvc93ipba7df10308pf.png)
Final answer:
hence, the central angle is 108 degrees.