Approximate Slope of a Function
We are given the function:
![H(x)=8\ln x+3](https://img.qammunity.org/2023/formulas/mathematics/college/blqo1kzg806xb12lzyjaw949tcj0yjuaml.png)
We will find the approximate value of the slope at (e,11).
It's required to use 3 possible values of the approximation differential h.
Let's use h=0.1 and evaluate the function at x = e + 0.1 = 2.8182818
Compute:
![H(e+0.1)=8\ln 2.8182818+3=11.2890193](https://img.qammunity.org/2023/formulas/mathematics/college/h5fi1uhncsrhay660twc9bxzxmi8o0xave.png)
Compute the difference quotient:
![H^(\prime)=(11.2890193-11)/(0.1)=2.890193](https://img.qammunity.org/2023/formulas/mathematics/college/of0gk1ger8h4e7r7prsraj8yj0cjtx2t0y.png)
Now we use h=0.01:
![H(e+0.01)=8\ln 2.728281828+3=11.02937635](https://img.qammunity.org/2023/formulas/mathematics/college/pa43od16bpv1p3npkqu6uxcx3tgooywaha.png)
The difference quotient is:
![H^(\prime)=(11.02937635-11)/(0.01)=2.9376353](https://img.qammunity.org/2023/formulas/mathematics/college/tv9z4f5y0h8gfyjima917nu8klunqcuflu.png)
Finally, use h=0.001:
![H(e+0.001)=8\ln 2.719281828+3=11.00294249](https://img.qammunity.org/2023/formulas/mathematics/college/8ec0xhuctj3zvcqurh3zcggl417ndravsf.png)
![H^(\prime)=(11.00294249-11)/(0.001)=2.9424943](https://img.qammunity.org/2023/formulas/mathematics/college/z2kig9ltxwxgd7ravmvq3iff1es0u7yq20.png)
The last result is the most accurate, thus the slope of the tangent line is 2.94