We are asked to determine the area of the given figure. The figure is composed of two semi-circles and a rectangle, therefore, the total area of the figure is:
![A=A_s+A_r+A_s](https://img.qammunity.org/2023/formulas/mathematics/college/cttf6zptps2qk40pl7vxrdt5ftgp4fmxr7.png)
The area of the semicircle is given by:
![A_s=(1)/(8)\pi D^2](https://img.qammunity.org/2023/formulas/mathematics/college/ze2p3jha3ftp6drc574sqptghggbj8fkim.png)
Where "D" is the diameter. Replacing the values we get:
![A_s=(1)/(8)(3.14)(70m)^2](https://img.qammunity.org/2023/formulas/mathematics/college/ft21ea54p29gmxklwbx50gqu9v9qenfw24.png)
Solving the operations:
![A_s=1923.25m^2](https://img.qammunity.org/2023/formulas/mathematics/college/kct9bw15pfb3sna6041hlhe9nafkfu1nya.png)
Now we determine the area of the rectangle using the following formula:
![A_r=wh](https://img.qammunity.org/2023/formulas/mathematics/college/ekweesmuogzovszvjandvefsyzp2xtr8yt.png)
Where "w" and "h" are the dimensions of the rectangle. Replacing the values we get:
![\begin{gathered} A_r=(98m)(70m) \\ A_r=6860m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7jkouhb9yxsyjhimgwi56a744wu9y7iglo.png)
Now we replace the values in the formula for the total area:
![A=1923.25m^2+6860m^2+1923.25m^2](https://img.qammunity.org/2023/formulas/mathematics/college/2537h61ihlthu0qv6u71xmzr0qrta2lkg9.png)
Solving the operations:
![A=10706.5m^2](https://img.qammunity.org/2023/formulas/mathematics/college/t15d5hz1y5kx9gkvp0srbt5hsgp3pa0yi3.png)