Answer:
12.5%
Step-by-step explanation:
To know the percent of change from year to year, we will calculate the Weight for 2 consecutive years.
So, when t = 0, we get that W is equal to:
![\begin{gathered} W_0=80(1.6)^{\text{ t/4}} \\ W_0=80(1.6)^{\text{ 0/4}} \\ W_0=80 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e20tk4r7nyle4pcel6k7k4ekre0dzla4rl.png)
Then, when t = 1, we get:
![\begin{gathered} W_1=80(1.6)^{\text{ t/4}} \\ W_1=80(1.6)^{\text{ 1/4}} \\ W_1=89.97 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3xsfbcmznvf1ik9osaw4o9g60my2u4urev.png)
Now, we can calculate the percentage of change as:
![(W_1-W_0)/(W_0)*100=(89.97-80)/(80)*100=12.47\text{ \%}](https://img.qammunity.org/2023/formulas/mathematics/college/67urkgbxt9ilxd0zmpxpjmg26k2vp4z8an.png)
Therefore, the best estimate is 12.5%