We are given the following equation

Let us solve the above trigonometric equation.
Using the double angle identity,

So, the equation becomes

Now, let us solve the equation by substitution
Let sinθ = u

Let us solve the above equation using the quadratic formula
![u=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/uu7j4p8igxmtj1zp8754uq5m5pt9jdy8of.png)
The coefficients are
a = -2
b = -1
c = 1
![\begin{gathered} u=\frac{-(-1)\pm\sqrt[]{(-1)^2-4(-2)(1)}}{2(-2)} \\ u=\frac{1\pm\sqrt[]{1+8}}{-4} \\ u=\frac{1\pm\sqrt[]{9}}{-4} \\ u=(1\pm3)/(-4) \\ u=(1-3)/(-4),\; \; u=(1+3)/(-4) \\ u=(-2)/(-4),\; \; u=(4)/(-4) \\ u=(1)/(2),\; \; u=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7d5ipyrbpfj9s1o5f41dpitv9d6ysx8rbs.png)
So, the two possible values are u = 1/2 and u = -1
Substitute them back into sinθ = u

Therefore, the two solutions of the given equation are θ = 30°, θ = 150°, θ = 270° on the interval [0, 360°)