The two classrooms are identical in length and width. On the other hand, the dimensions of the storage closet are
![(40-34)*(36-30)=6*6](https://img.qammunity.org/2023/formulas/mathematics/college/ebanwa65zlcmcqwbr016eg9zqdd0tcbs8m.png)
The shape of both classrooms and the storage closet is rectangular; therefore, their areas are
![\begin{gathered} A_{\text{rectangle}}=l\cdot w\to length\cdot width_{} \\ \Rightarrow A_{\text{Friedman}}=40\cdot36 \\ _{}A_{\text{Elliot}}=40\cdot36 \\ A_(storage)=6\cdot6 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z75fv2p2fnqv4rzsfirtu85j0j01slht0l.png)
Simplifying,
![\begin{gathered} \Rightarrow A_{\text{storage}}=36ft^2 \\ \Rightarrow A_{\text{Friedman}}=A_{\text{Elliot}}=1440ft^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a7ka54996d31qp5bl3ws7jga9wkqpl9jsg.png)
Finally, the total area of the compound is
![\begin{gathered} A_{\text{total}}=A_{\text{Friedman}}+A_{\text{Elliot}}-A_{\text{storage}} \\ \Rightarrow A_{\text{total}}=2\cdot1440-36=2844 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7kgdi6qsv7uzdwnpajb3mrwwg4kqtf6wa0.png)
Thus, the total area of the two classrooms plus the closet is 2844ft^2
Then,