Given an ordered pair 1:
![\mleft(x,y\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/nkwih68e7xdwdbt33fbk5q6rlbcclfgmmy.png)
And a distinct ordered pair 2:
![(x,y)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fc1644jwszkab41ywkr1o5torpamtdlony.png)
You can rewrite them as:
![\begin{gathered} (x_1,y_1) \\ \\ (x_2,y_2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5dvvnst4ah01xckrhv4ovsnrgk1cpvn6b3.png)
According to the Pythagorean Theorem, for Right Triangles:
![c=\sqrt[]{a^2+b^2}](https://img.qammunity.org/2023/formulas/mathematics/college/6uwqakmkjq6nua21bpopztkrf20jt2flji.png)
Where "c" is the hypotenuse and "a" and "b" are the legs of the Right Triangle.
Then, you can set up that:
Then, to find the hypotenuse of the Right Triangle or the distance "d" between the points, you can apply the Pythagorean Theorem and set up that:
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/be685jmxw05hm2tq94m5iuge2xjynn1hfn.png)
Therefore, the answer is:
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/be685jmxw05hm2tq94m5iuge2xjynn1hfn.png)