Answer:
The minimum unit cost is $12,197.
Explanation:
The cost function is given below:
![C\mleft(x\mright)=x^2-520x+79,797](https://img.qammunity.org/2023/formulas/mathematics/high-school/h55xg4zst7ixsquutwy3kv41n1c02zqwde.png)
To find the minimum unit cost, first, find the derivative of C(x).
![C^(\prime)(x)=2x-520](https://img.qammunity.org/2023/formulas/mathematics/high-school/q7pqsg79yb830eaa66oy1saqotpvr74zpx.png)
Next, set the derivative equal to 0 and solve for x.
![\begin{gathered} 2x-520=0 \\ 2x=520 \\ x=520/2 \\ x=260 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/oh6rh07v2jy45xm9n62x0o0o8mvlvmv7rx.png)
Finally, substitute x=260 into C(x) to find the minimum cost.
![\begin{gathered} C\mleft(x\mright)=x^2-520x+79,797 \\ \implies C(260)=(260)^2-520(260)+79,797 \\ =67600-135,200+79,797 \\ =12,197 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/odjzy06euhkwz2swea5od45yemi63ynons.png)
The minimum unit cost is $12,197.