11.0k views
3 votes
Let f(x) = x² + 11x + 25 Find a so that f(a) = 1

User Tidbeck
by
7.9k points

1 Answer

3 votes

A=-3

A=-8

Step-by-step explanation

Step 1


f(x)=x^2+11x+25

there is a number A so f(A) =1, then


\begin{gathered} f(A)=A^2+11A+25 \\ f(A)=1 \\ \text{then} \\ A^2+11A+25=1 \\ A^2+11A+24=0\text{ equation(1)} \end{gathered}

Step 2

solve using the quadratic equation


\begin{gathered} \text{for } \\ ax^2+bx+c=0 \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}

a)let

a=1

b=11

c=24

the variable is A,

b) replace


\begin{gathered} A=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ A=\frac{-11\pm\sqrt[]{121^{}-4\cdot1\cdot24}}{2\cdot1} \\ A=\frac{-11\pm\sqrt[]{121^{}-96}}{2} \\ A=\frac{-11\pm\sqrt[]{25}}{2} \\ A_1=\frac{-11+\sqrt[]{25}}{2}=(-11+5)/(2)=(-6)/(2)=-3 \\ A_1=-3 \\ A_2=\frac{-11-\sqrt[]{25}}{2}=(-11-5)/(2)=(-16)/(2)=-8 \\ A_2=-8 \end{gathered}

I hope this helps you

User Unexist
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories