The probability (P) of event A occurring is:
![P(A)=\frac{\text{ number of favorable outcomes to A}}{\text{ total number of outcomes}}](https://img.qammunity.org/2023/formulas/mathematics/college/2mtqhl3t9lwj09dx4dr56xuapbohy00pqt.png)
The probability of 2 consecutive events A and B occur is:
![P=P(A)*P(B)](https://img.qammunity.org/2023/formulas/mathematics/college/nhwu92ngcseo7yhvmku75jeaocxfet4lr5.png)
Then, let's calculate the probability of selecting an insect:
Favorable outcomes: 10
Total outcomes: 30
![P(insect)=(10)/(30)=(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/vexvaloaobvz0vk711dwbks0y1extc8cxj.png)
Now, let's calculate the probability of selecting tree:
If the insect card is replaced:
Favorable outcomes: 8
Total outcomes: 30
![P(B)=(8)/(30)=(4)/(15)](https://img.qammunity.org/2023/formulas/mathematics/college/y510f89o4tf7km92xbgtdmi40fj3ilttbi.png)
If the insect card is not replaced:
Favorable outcomes: 8
Total outcomes: 29
![P(B)=(8)/(29)](https://img.qammunity.org/2023/formulas/mathematics/college/befrr9w1d7aba9sk37c566gsy4ivzp8g77.png)
The probability of randomly selecting an insect and then a tree is:
With replacement:
![\begin{gathered} P=(1)/(3)*(4)/(15) \\ P=(4)/(45) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/exbveegtjpaocv9b2ife2e9nd4shmi8anp.png)
Without replacement:
![\begin{gathered} P=(1)/(3)*(8)/(29) \\ P=(8)/(87) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/go2k768mdarloh0ecdaer19kk4hcux4w72.png)
Answer:
With replacement: 4/45
Without replacement: 8/87