167k views
0 votes
For a certain company , the cost for producing items is 45x + 300 and the revenue for selling items is 85x - 0.5x ^ 2. Part a: set up an expression for the profit from producing and selling x items and solve. we assume the company sells all of the items it produces. Part B: find two values of x thatvwill create a profit of $50. Part C: is it possible for the company to make a profit if $2500?

User Korsbo
by
3.5k points

1 Answer

3 votes

Producing cost:


45x+300

Revenue:


85x-0.5x^2

The profit (P) is equal to substract the producing cost for the revenue:


\begin{gathered} P=(85x-0.5x^2)-(45x+300) \\ P=85x-0.5x^2-45x-300 \\ P=40x-0.5x^2-300 \end{gathered}

You can write also as:


P=-0.5x^2+40x-300

----------------------------------

P=50:


50=-0.5x^2+40x-300

To solve for x:

Substract 50 in both sides of the equation:


\begin{gathered} 50-50=-0.5x^2+40x-300-50 \\ 0=-0.5x^2+40x-350 \end{gathered}

Use the quadratic formula:


\begin{gathered} ax^2+bx+c=0 \\ \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}
\begin{gathered} x=\frac{-40\pm\sqrt[]{40^2-4(-0.5)(-350)}}{2(-0.5)} \\ \\ x=\frac{-40\pm\sqrt[]{1600-700}}{-1} \\ \\ x=\frac{-40\pm\sqrt[]{900}}{-1} \\ \\ x=(-40\pm30)/(-1) \\ \\ x_1=(-40+30)/(-1)=(-10)/(-1)=10 \\ \\ x_2=(-40-30)/(-1)=(-70)/(-1)=70 \end{gathered}Then, the two values of x that make a profit of $50 are: 10 and 70

------------------ ----------------------

P=2500


2500=-0.5x^2+40x-300

Solve for x:


\begin{gathered} 0=-0.5x^2+40x-300-2500 \\ 0=-0.5x^2+40x-2800 \\ \\ x=\frac{-40\pm\sqrt[]{40^2-4(-0.5)(-2500)}}{2(-0.5)} \\ \\ x=\frac{-40\pm\sqrt[]{1600-5000}}{-1} \\ \\ x=\frac{-40\pm\sqrt[]{-34000}}{-1} \end{gathered}

As the number under the square root is a negative number the equation has no solution (value of x) in the real numbers.

No, is not possible for the company to make a profit of $2500