A quantity that is compounded continuously follows the next equation:
![A=Pe^(rt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/5drqeoscjn6fncl992j2z04p3erm9eojdf.png)
Where:
![\begin{gathered} A=\text{ amount in time ''t''} \\ P=\text{ initial amount} \\ r=\text{ rate of interest in decimal form} \\ t=\text{ time} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jtdt1ffffog8dchui32myq9tezcrlg21yc.png)
Now, the interest rate in decimal notation is determined by dividing the percentage by 100:
![r=(4.75)/(100)=0.0475](https://img.qammunity.org/2023/formulas/mathematics/high-school/2otuqy64pgoulybxqdni1ab80bjyj3s74n.png)
Now, we are asked to determine the time required for the quantity to double. Therefore, we need to determine "t" when:
![A=2P](https://img.qammunity.org/2023/formulas/mathematics/college/i39frrbp1n03vrby0qhvxke664zyxx0vz6.png)
Substituting in the formula we get:
![2P=Pe^(rt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/692nb9a48dd7ngrjvmz1ifg5ei2qvciv2h.png)
Now, we can cancel out the "P":
![2=e^(rt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/j1jmjdz3825vazmfa6b1eei8rtzu5mtq8y.png)
Now, we solve for "t". First, we take the natural logarithm to both sides:
![ln2=lne^(rt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gp94he1mtxuaokkugugh1jju9yyyd63ncq.png)
Now, we use the following property of logarithms:
![lnx{}^y=ylnx](https://img.qammunity.org/2023/formulas/mathematics/high-school/ne3801i5jqtwjfz7g51s8tz4cixrz4mjl5.png)
Applying the property we get:
![ln2=rtlne](https://img.qammunity.org/2023/formulas/mathematics/high-school/1qmkk0hp89l46zoohpu25umw5nk6spblip.png)
We have that:
![lne=1](https://img.qammunity.org/2023/formulas/mathematics/college/t8igkadffaxflp60evo9j5hfigth3rvwmw.png)
Therefore:
![ln2=rt](https://img.qammunity.org/2023/formulas/mathematics/high-school/f9jzlyshyjhj7po7mlg8x8shs1x587o07l.png)
Now, we divide both sides by "r":
![(ln2)/(r)=t](https://img.qammunity.org/2023/formulas/mathematics/high-school/wfvqnnrr8erkec3ssurphkdt1t8cz68v3m.png)
Now, we substitute the value of "r":
![(ln2)/(0.0475)=t](https://img.qammunity.org/2023/formulas/mathematics/high-school/3c5ugfh8nl4b4zmpp7uvgd9gcdx43u7bdb.png)
Solving the operations:
![14.593=t](https://img.qammunity.org/2023/formulas/mathematics/high-school/he13668r72vucuagacargb89ujzgfca8tf.png)
Therefore, the right option is A.