blank A: a^2 + b^2 = c^2
blank B: Definition of unit circle
blank C: sin θ = y/1 = y
Step-by-step explanation:
In order to prove the identity given, we first start with Pythagoras's theorem
![a^2+b^2=c^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/fdnnfwrccw5g60jmi691r5gcz9ekxf8waa.png)
which is blank a.
Next, we apply the theorem to the circle to get
![x^2+y^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/98owtk8l91amddsx65l40ftvbx4rkoj0m3.png)
then we make the substitutions.
Since it is a unit circle r = 1 (blank B) and using trigonometry gives
![\cos \theta=(x)/(r)=(x)/(1)=x](https://img.qammunity.org/2023/formulas/mathematics/college/rdluzjp4x30vngq5zh5p5x27ogjb70da1s.png)
![\boxed{x=\cos \theta}](https://img.qammunity.org/2023/formulas/mathematics/college/z56aigvgkfynuolhaw5ovf9g51exhmtdzm.png)
and
![\sin \theta=(y)/(r)=(y)/(1)=y](https://img.qammunity.org/2023/formulas/mathematics/college/h3z750fk7hxep98frjza9aj6t57a4cd17z.png)
![\boxed{y=\sin \theta}](https://img.qammunity.org/2023/formulas/mathematics/college/hoc8bcelse3ugkeeunwbt6dy4pw01p7c7s.png)
which is blank C.
With the value of x, y and r in hand, we now have
![x^2+y^2=1](https://img.qammunity.org/2023/formulas/mathematics/college/581vc7htzyz0lz0gswo37sjogposu2xff7.png)
![\rightarrow\sin ^2\theta+\cos ^2\theta=1](https://img.qammunity.org/2023/formulas/mathematics/college/n8n2t5z82qxkfwy00rbe1qpbyj6vyyapgq.png)
Hence, the identity is proved.