Given parameters:
![\begin{gathered} P=Loan\text{ amount=\$3000} \\ r=rate\text{ intersest per period=9\%=}(9)/(100*12)=(0.09)/(12)=0.0075 \\ n=n\\u mber\text{ of payments=30 months} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6yqhtuakefv8062jm5vheyyvvimitbdlqo.png)
We can now apply the formula below to calculate the payment amount per period
![A=P(r(1+r)^n)/((1+r)^n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/6h4tkoodvvrmlcwxdg6jsqblkjczsjjrbh.png)
![\begin{gathered} A=3000*(0.0075(1+0.0075)^(30))/((1+0.0075)^(30)-1) \\ \\ A=3000*(0.0075(1.25127))/((1.25127)-1)=(28.1536)/(0.25127)=112.05 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/io7ia4t5xbvd0a98y1xflxyc64omy6eqdm.png)
Thus his monthly payment will be $112.05
But since we have to get the interest on the first month's pay,
The interest is
![r* P=0.0075*3000=\text{ \$22.5}](https://img.qammunity.org/2023/formulas/mathematics/college/m7zf55h8o9if04li781ivd84zegou1531l.png)
Thus, $22.50 is the interest on the first month's payment