EXPLANATION
![\int ((\ln x)^(96))/(x)dx](https://img.qammunity.org/2023/formulas/mathematics/college/pegfhywy5wqnlfqlytq34sqwsreaplpac6.png)
Applying subtitution: u=ln(x)
By integral substitution definition
![\int f(g(x))\cdot g^{^(\prime)}(x)dx=\text{ }\int f(u)du,\text{ u=g(x)}](https://img.qammunity.org/2023/formulas/mathematics/college/r1bksw5vym9vbjtqbur7emjdxm850bwvgu.png)
Substitute: u=ln(x)
![(du)/(dx)=(1)/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/x8lkuo0e1kjfffu2z3h44ymdy3th98v49p.png)
![(d)/(dx)=(\ln (x))](https://img.qammunity.org/2023/formulas/mathematics/college/ab4ie1yqfttfub6xj3602v96oi325iotbs.png)
Apply the common derivative:
![(d)/(dx)(\ln (x))=(1)/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/v69i21z7udfy08gjpm1dcf3zvcybb5lvo3.png)
![\Rightarrow du=(1)/(x)dx](https://img.qammunity.org/2023/formulas/mathematics/college/ywgf6m83iny8lt45h8rd6728u0r5ir9cwa.png)
![\Rightarrow dx=xdu](https://img.qammunity.org/2023/formulas/mathematics/college/ddv4dfood3ugyeopxt46qwzl88twkplq4o.png)
![=\int (u^(96))/(x)\text{xdu}](https://img.qammunity.org/2023/formulas/mathematics/college/yaql6s8yg0arz6f1zpyu95gmty5ksbygan.png)
Simplify:
![(u^(96))/(x)x](https://img.qammunity.org/2023/formulas/mathematics/college/frzbur8df6yzxlvgjl75vl9ymwf8gdmfh0.png)
Multiply fractions:
![a\cdot(b)/(c)=(a\cdot b)/(c)](https://img.qammunity.org/2023/formulas/mathematics/college/e2lm7fkz6q2hedr5vsn1opns6kt84tvudj.png)
![=(u^(96)x)/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/mm03wyf5xehra04cg8gvybvccq3wqirvb3.png)
Cancel the common factor: x
![=u^(96)](https://img.qammunity.org/2023/formulas/mathematics/college/b6ih595u4b91pp0ox4xlkw2ahw3os6t01i.png)
![=\int u^(96)du](https://img.qammunity.org/2023/formulas/mathematics/college/g9xao5e474exf99r1ujbw8it12l2dnclob.png)
Apply the Power Rule:
![\int x^adx=(x^((a+1)))/(a+1),\text{ a }\\e\text{ -1}](https://img.qammunity.org/2023/formulas/mathematics/college/goos8h4s0t9jc7l0qtpyosqpduriq2gjiv.png)
![=(u^(96+1))/(96+1)](https://img.qammunity.org/2023/formulas/mathematics/college/7v0pqh4th3oxdpbmfhhk6t3jd46tec6chp.png)
Substitute back u=ln(x)
![=(\ln ^(96+1)(x))/(96+1)](https://img.qammunity.org/2023/formulas/mathematics/college/aqsoftk06tdoox14bq3s9g4hx5gtjks3y8.png)
Simplify:
![(\ln ^(96+1)(x))/(96+1)](https://img.qammunity.org/2023/formulas/mathematics/college/n3g8ie5xxbdyihmp639liowfvl62g3woof.png)
Add the numbers: 96+1=97
![=(\ln ^(97)(x))/(97)](https://img.qammunity.org/2023/formulas/mathematics/college/3zuncore8z5sqisa2epjci04k9ybodxqxj.png)
![=(1)/(97)\ln ^(97)(x)](https://img.qammunity.org/2023/formulas/mathematics/college/o43muc5a2gy4a9frcuzdjaoqrotae3bwtp.png)
Add a constant to the solution:
![=(1)/(97)\ln ^(97)(x)\text{ + C}](https://img.qammunity.org/2023/formulas/mathematics/college/1pj8a6jdj4ssq9o0z0ytg3hht9sn0iice3.png)
The answer is D:
![((\ln x)^(97))/(97)+C](https://img.qammunity.org/2023/formulas/mathematics/college/hq6v2tpw716rkczq4x7rrh3pruidmrq6p8.png)