Step-by-step explanation:
Given;
We are given the following equation;
![1.12^x=20](https://img.qammunity.org/2023/formulas/mathematics/college/ir3f2pjwxi2isra7bjrnrouv92t86ipkrz.png)
Required;
We are required to describe two methods which can be used to solve for x in this equation.
Step-by-step solution;
We can solve for the variable x by taking the natural log of both sides of the equation. This is shown below;
![1.12^x=20](https://img.qammunity.org/2023/formulas/mathematics/college/ir3f2pjwxi2isra7bjrnrouv92t86ipkrz.png)
We take the natural log of both sides;
![ln1.12^x=ln20](https://img.qammunity.org/2023/formulas/mathematics/college/hwwioab9jv1bl5vxc7el14auhfk2wmvw1j.png)
Next we apply the log rule;
![\begin{gathered} If: \\ log_bx^a \\ Then: \\ alog_bx \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5l5zvtkvq7vgwu2anzdrz5cajezjllsag9.png)
Therefore, our equation is now refined and becomes;
![xln1.12=ln20](https://img.qammunity.org/2023/formulas/mathematics/college/fu6bdvcynkxqt2o3ib2zhsi7esx7zeuwju.png)
Divide both sides by ln(1.12);
![x=(ln(20))/(ln(1.12))](https://img.qammunity.org/2023/formulas/mathematics/college/65s66s41fiiphebmss2yog5jlhgmwutaa0.png)
A second method is to express it as a logarithmic equation;
![1.12^x=20](https://img.qammunity.org/2023/formulas/mathematics/college/ir3f2pjwxi2isra7bjrnrouv92t86ipkrz.png)
We shall apply the log rule which is;
![\begin{gathered} If: \\ log_bx=a \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8sut6i7bmtwjue2ofd31q6ava0p3ntewj2.png)
![\begin{gathered} Then: \\ b^a=x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d3jc9axjqalaqeo2zvqswzntca8g3k8j2d.png)
For example;
![\begin{gathered} If: \\ log_(10)100=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rf001we51dg7d5kj2rcatr9sfx09y0v6jf.png)
![\begin{gathered} Then: \\ 10^2=100 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l2sx397bb53mkzjkz79v17ag1ammtib89z.png)
Therefore, for the equation given;
![\begin{gathered} If: \\ 1.12^x=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rkd6heodbvlzttxfzssc3vj44hrceouw4o.png)
![\begin{gathered} Then: \\ log_(1.12)20=x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/emlk45unb3fbzep25ffq85a1l0zzu7eypp.png)
Note that both solutions can be simplified eventually with the use of a calculator.
ANSWER:
(1) By taking the natural log of both sides
(2) By expressing the equation as a logarithmic equation