Given:
m∠DEF = 36
DE = 15 units
Let's find the area of the sector.
To find the area of the sector, apply the formula:
![A=(\theta)/(360)\ast\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/7ye4x86fkz0y3nyxvvgh6b3016hd85x1ey.png)
Where:
radius, r = DE = 15 units
θ = 36
Substitute values into the formula:
![\begin{gathered} A=(36)/(360)\ast\pi\ast15^2 \\ \\ A=(1)/(10)\ast\pi\ast225 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/groy8l0dccdujvtwm7mevktcl8el9pt3gw.png)
Solving further:
![\begin{gathered} A=0.1\pi\ast225 \\ \\ A=70.69\text{ square units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lv9lubi08izqt8d7saqm9pe2qov8u5zmvy.png)
Therefore, the area of the sector rounded to the nearest hundredth is 70.69 square units
ANSWER:
![\begin{gathered} ^{} \\ \text{ 70.69 units}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mbdt4huydrfbnav4aa8mb1aivgmtvv9rp7.png)