We will determine if the sets are proportional, if they are, then those will be the sets of lengths that would belong to triangle z, that is:
a.
![(4)/(8)=(7)/(11)=(14)/(10)\Rightarrow(1)/(2)\\e(7)/(11)\\e(7)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/1401qajsrzevkrhqdkwfcexeiwqy7gx40c.png)
So, set a is not one.
b.
![(4)/(10)=(7)/(17.5)=(10)/(25)\Rightarrow(2)/(5)=(2)/(5)=(2)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/v2hxdm2eeen7vvx19uihym8hs0dum88zan.png)
So, set b could be a set of lengths that belong to triangle z.
c.
![(4)/(6)=(7)/(9)=(10)/(11)\Rightarrow(2)/(3)\\e(7)/(9)\\e(10)/(11)](https://img.qammunity.org/2023/formulas/mathematics/college/em4dom3d5l2b5zl8fisjscckudisofeyx7.png)
So, set c is not one.
d.
![(4)/(6)=(7)/(10.5)=(10)/(15)\Rightarrow(2)/(3)=(2)/(3)=(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/qe5lyab0b9iun8t5kxb6jrvyrakf7uel1j.png)
So, set d could be a set of lengths that belong to triangle z.
e.
![(4)/(8)=(7)/(14)=(10)/(20)\Rightarrow(1)/(2)=(1)/(2)=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/j69vz6apsc1f4537few233s5t9fzzx06k1.png)
So, set e could be a set of lengths that beling to triangle z.
So, the options that could be candidate are: b, d & e.