Answer:
The springs from the original pogo stick and the toddler's pogo stick length are equal after 1 second and 0.9994 second.
Step-by-step explanation:
The given functions are:
![\begin{gathered} f(\theta)=2\cos \theta+\sqrt[]{3} \\ g(\theta)=1-\sin ^2\theta+\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/muv18jj86p7m96zyrahwl57nyk2tuaey1g.png)
The springs from the original pogo stick and the toddler's pogo stick length are equal when both functions coincide
That is;
![\begin{gathered} f(\theta)=g(\theta) \\ \Rightarrow2\cos \theta+\sqrt[]{3}=1-\sin ^2\theta+\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bazc7age3l6lfkuk7f41dc2ldah7fyjtlw.png)
Solving the equation, we have:
![\begin{gathered} 2\cos \theta+\sqrt[]{3}=1-\sin ^2\theta+\sqrt[]{3} \\ Subtract\sqrt[]{3}\text{ from both sides} \\ 2\cos \theta=1-\sin ^2\theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zitla8dhb63jsqwgrg6giexvzxooiph27w.png)
Note the identity below:
![\begin{gathered} \cos ^2\theta+\sin ^2\theta=1 \\ \cos ^2\theta=1-\sin ^2\theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oqjug0emdpebxlexmsg70lok0wrt87q19a.png)
This means
![\begin{gathered} 2\cos \theta=\cos ^2\theta \\ \cos ^2\theta-2\cos \theta=0 \\ \cos \theta(\cos \theta-2)=0 \\ \cos \theta=0 \\ \Rightarrow\theta=\cos ^(-1)(0)=1 \\ \\ OR \\ \cos \theta-2=0 \\ \cos \theta=2 \\ \theta=\cos ^(-1)(2)=0.9994 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6ekowskc3nwp7h306evcpbxxqpf3014w7c.png)
The springs from the original pogo stick and the toddler's pogo stick length are equal after 1 second and 0.9994 second.