85,132 views
2 votes
2 votes
Rewrite csc(theta) / sec(theta) as a single trig function with no fractions

User Mohamed Irshad
by
3.1k points

1 Answer

2 votes
2 votes

The given expression is


(\csc \theta)/(\sec \theta)
\text{ We know that }csc\theta=(1)/(\sin x)\text{ and }\sec \theta=(1)/(cos\theta)\text{.}

Using the reciprocal, we get


(\csc\theta)/(\sec\theta)=((1)/(\sin\theta))/((1)/(\cos \theta))


\text{ Use }((a)/(b))/((c)/(d))=(a)/(b)*(d)/(c)


(\csc\theta)/(\sec\theta)=(1)/(\sin\theta)*(\cos \theta)/(1)
\text{ Use }(\cos\theta)/(\sin\theta)=\cot \theta.


(\csc\theta)/(\sec\theta)=\cot \theta

Hence the answer is


\cot \theta

User Richard Friedman
by
3.3k points