To use completing the square to find the vertex of the given parabola, we proceed as follows:
![g(x)=x^2-5x+14](https://img.qammunity.org/2023/formulas/mathematics/college/y2i6x4ftmm12k5efn8hz4rb12oy3tznn0s.png)
- we divide the coefficient of x by 2 and add and subtract the square of the result, as follows:
![g(x)=x^2-5x+((5)/(2))^2-((5)/(2))^2+14](https://img.qammunity.org/2023/formulas/mathematics/college/lynwxsfgsqfc0qsqv4ry4kbl03cah6312w.png)
- simplify the expression as follows:
![\begin{gathered} g(x)=(x^2-5x+((5)/(2))^2)-((5)/(2))^2+14 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n9j9gl7kcc4au40mjofnf4fv4fldqswair.png)
![g(x)=(x^{}-(5)/(2))^2-((5)/(2))^2+14](https://img.qammunity.org/2023/formulas/mathematics/college/oj4ycvlnveoh1n0w9ilsvnpxe8leb3s14v.png)
![g(x)=(x^{}-(5)/(2))^2-(25)/(4)^{}+14](https://img.qammunity.org/2023/formulas/mathematics/college/tdtey0de48el4vqo06xe60y76d3qri1ljh.png)
![g(x)=(x^{}-(5)/(2))^2-(25)/(4)^{}+(56)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/8x7jdfqnbgsqlw7b58k89klhp87k2cchia.png)
![g(x)=(x^{}-(5)/(2))^2+(-25+56)/(4)^{}](https://img.qammunity.org/2023/formulas/mathematics/college/70lgyedqokz8e474317e4kf2ffb4q6q0xl.png)
![g(x)=(x^{}-(5)/(2))^2+(31)/(4)^{}](https://img.qammunity.org/2023/formulas/mathematics/college/n445xeobgycu25yaohkn89h0e1l28of37t.png)
From the general vertex equation, given as:
![g(x)=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/fwxbxh3dgnx0hebkbemv5piilk0smf2aql.png)
The coordinate of the vertex is taken as: (h, k)
Therefore, given:
![g(x)=(x^{}-(5)/(2))^2+(31)/(4)^{}](https://img.qammunity.org/2023/formulas/mathematics/college/n445xeobgycu25yaohkn89h0e1l28of37t.png)
We have the vertex to be:
![((5)/(2),(31)/(4))\text{ or (2.5, 7.75)}](https://img.qammunity.org/2023/formulas/mathematics/college/8p5okvz9bmlxd5itk9yktax0zo3dth2eea.png)