Step 1
Define the equation of a circle

Step 2
Write down the parameters
r = radius = ?
h = -6
k = 4
Step 3
find the radius
Considering the triangle we can find the radius using the Pythagoras theorem

![\begin{gathered} r\text{ = }\sqrt[\square]{25\text{ + 144}} \\ r\text{ = }\sqrt[]{169} \\ r\text{ = 13} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fpzszgi5ekoobg4axy8rtxe3i0waqj66a8.png)
Step 3
Substitute the values into the equation and simplify

Answer is option A