When we have a radical, we can simplify it by the rule:
![\sqrt[]{ab}=\sqrt[]{a}\sqrt[]{b}](https://img.qammunity.org/2023/formulas/mathematics/college/36x8mrtqxls717blnt9mq87duprn6qlre4.png)
So, we have to break down 500 into simpler radicals until we have a radical that can't be broken down. Let's simplify Root(500).
![\sqrt[]{500}=\sqrt[]{50}\sqrt[]{10}](https://img.qammunity.org/2023/formulas/mathematics/high-school/odjsyc8wkwmye6yuddq8eyarbjxvdnf2gf.png)
Now, we can break down Root(50) further.
![\begin{gathered} \sqrt[]{50}\sqrt[]{10} \\ =\sqrt[]{25}\sqrt[]{2}\sqrt[]{10} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bn7hsh1f8phbl0yxm7prvo4i0jydk83vg4.png)
Now, let's break down Root(10) also, thus we have:
![\begin{gathered} \sqrt[]{25}\sqrt[]{2}\sqrt[]{10} \\ =\sqrt[]{25}\sqrt[]{2}\sqrt[]{5}\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/k28e9xrgo0q68zpbipnmhxtvelkkfi3uqd.png)
We can see:
• Root(25) is 5
,
• Also Root(2)*Root(2) is 2 by using the rule:
![\sqrt[]{a}\sqrt[]{a}=a](https://img.qammunity.org/2023/formulas/mathematics/college/9w25u8pls7bk3geaba1ya2wuk0wz3qk7nq.png)
Thus, we finally have:
![\begin{gathered} \sqrt[]{25}\sqrt[]{2}\sqrt[]{5}\sqrt[]{2} \\ =5(2)\sqrt[]{5} \\ =10\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4mm21kdiu6u6rkflpsbc63vdyvc0jgmypv.png)