Given:
Given data points are (950,100) and (1000,40).
Required:
To find the linear model for this data.
Step-by-step explanation:
The standard form of linear equation is
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
Where
![\begin{gathered} m=(y2-y1)/(x2-x1) \\ \\ m=(40-100)/(1000-950) \\ \\ m=-(60)/(50) \\ \\ m=-(6)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5r3v1236c2go3rx3i6dpk8q6x962ebbjdj.png)
Now
![y=-(6)/(5)x+b](https://img.qammunity.org/2023/formulas/mathematics/college/rnpmy0rypa9kbnvdt8tewgt31o1117208d.png)
Now we have to find b using the points (950,1000), we get
![\begin{gathered} 1000=-(6)/(5)(950)+b \\ \\ 1000=-6*190+b \\ \\ 1000=-1140+b \\ \\ b=1000+1140 \\ \\ b=2140 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/30eli2dawhu042i3b7hftpuvdhxlr0eh1x.png)
![y=-(6)/(5)x+2140](https://img.qammunity.org/2023/formulas/mathematics/college/24315qwfgrgfi7wyrp1w5fpxy362vvqu5w.png)
Final Answer:
![y=-(6)/(5)x+2,140](https://img.qammunity.org/2023/formulas/mathematics/college/zc9cfnf78r4pxrpqpjmssgob6tq2dyepmm.png)