We have two transformations.
We will apply them to a generic point P=(x,y), and then we can replace them with any coordinates as inputs.
First transformation: translating 6 units to the right.
This changes the x-coordinate by adding 6 units (x=0 becames x'=6, for example), so we can write:
![P=(x,y)\longrightarrow P^(\prime)=(x+6,y)](https://img.qammunity.org/2023/formulas/mathematics/college/zcoohwxfrzr5swgs7i2cj11gnj6o4ijr82.png)
Second transformation: rotate 90 degrees clockwise.
This changes both x and y coordinates. We can look at a drawing to understand the transformation.
The x-coordinate becomes the y-coordinate, and the y-coordinate becomes the negative x-coordinate.
We can then write:
![P^(\prime)=(x+6,y)\longrightarrow P^(\prime)^(\prime)=(y,-x-6)](https://img.qammunity.org/2023/formulas/mathematics/college/osgvxfhzlpw0x3qc5hvfoqsfcsr1p2ae7b.png)
So now we know that the final image of a point (x,y) after the two transformations is (y,-x-6).
Then, we can list all four points:
![P=(-3,7)\longrightarrow P^(\prime)^(\prime)=(7,-(-3)-6)=(7,-3)](https://img.qammunity.org/2023/formulas/mathematics/college/swl7ub6z173v00ewacr1u1p7jjj2rtiloj.png)
![Q=(4,12)\longrightarrow Q^(\prime)^(\prime)=(12,-4-6)=(12,-10)](https://img.qammunity.org/2023/formulas/mathematics/college/bclm33yqjanirt8k46ol6j07uwezj79iul.png)
![R=(4,-2)\longrightarrow R^(\prime)^(\prime)=(-2,-4-6)=(-2,-10)](https://img.qammunity.org/2023/formulas/mathematics/college/9f5p3kwv3son24u2zbu0bmd49zwtojag4z.png)
![S=(-3,-7)\longrightarrow S^(\prime)^(\prime)=(-7,-(-3)+6)=(-7,-3)](https://img.qammunity.org/2023/formulas/mathematics/college/9g0ujmwzb17znh67zgi4qnj5sh8g7j7hjh.png)
Final coordinates: (7,-3), (12,-10), (-2,-10) and (-7,-3).