We will have the next diagram
Then we can sum the forces in x and sum the forces in y
Forces in x
![\sum ^{}_{}F_x=-T_1\sin (\alpha)+T_2\cos (\beta)=0](https://img.qammunity.org/2023/formulas/physics/college/455ralnsgi1rgzvfrbr865s59s1j3rshw3.png)
![\sum ^{}_{}F_x=-T_1\sin (15)+T_2\cos (35)=0](https://img.qammunity.org/2023/formulas/physics/college/gf0hi2amad8uf7ukvnphzkluen7rasn5ib.png)
Forces in y
![\sum ^{}_{}F_y=T_1\cos (\alpha)+T_2\sin (\beta)=mg](https://img.qammunity.org/2023/formulas/physics/college/mjbd1l804cs6bglsquhppfvgep9hht7zrj.png)
![\sum ^{}_{}F_y=T_1\cos (15)+T_2\sin (35)=19.5(9.8)](https://img.qammunity.org/2023/formulas/physics/college/bwhkqc7jpyn5w8tye4g20qpc1epczmxq21.png)
We simplify the equations found and we found the next system of equation
![\begin{gathered} -T_1\sin (15)+T_2\cos (35)=0 \\ T_1\cos (15)+T_2\sin (35)=191.1 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6vynugn1fe86f26jecb9hgq4qmu1br0g93.png)
then we isolate the T2 of the first equation
![T_2=(T_1\sin(15))/(\cos(35))](https://img.qammunity.org/2023/formulas/physics/college/u0y4xmcsjfvqd7s0vvhrd23aafytzcfvic.png)
We substitute the equation above in the second equation
![T_1\cos (15)+((T_1\sin(15))/(\cos(35)))\sin (35)=191.1](https://img.qammunity.org/2023/formulas/physics/college/oelvahdeg6zketpmwwjhfpbusfj36825o8.png)
we simplify
![T_1(\cos (15)+(\sin (15)\sin (35))/(\cos (35)))=191.1](https://img.qammunity.org/2023/formulas/physics/college/fobhr2av7hsdog0iqintgqnnidh9gyxe2t.png)
![T_1(1.147)=191.1](https://img.qammunity.org/2023/formulas/physics/college/ic8uewe32dnji553ofq5a1qa5ax9sqqv8g.png)
We isolate the T1
![T_1=\frac{191.1}{1.147^{}}=166.6N](https://img.qammunity.org/2023/formulas/physics/college/qxqpeuwjf2yaovnypqaea0dxjf21n9tuyz.png)
then we can substitute the value we found in T1 in the euation with T2 isolate
![T_2=\frac{(166.6)_{}\sin (15)}{\cos (35)}=52.54N](https://img.qammunity.org/2023/formulas/physics/college/296ksry9bh7iujgq60ky8wg5uvn6w9xb4t.png)