9452
Step-by-step explanation
an exponential function is given by:
![\begin{gathered} y=a(b)^x \\ \text{where a is the initial amount} \\ b\text{ is the rate of change} \\ x\text{ is the time} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pw83v33rdnefc9b1pge47zx474ogskry0l.png)
so
Step 1
Set the equations
a) initial population = 2363
time=0
replace
![\begin{gathered} y=a(b)^x \\ 2363=a(b^0) \\ 2363=a\cdot1 \\ 2363=a \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1x9mfi9xkdqorsy5sha8f1slgscwf0fs1r.png)
b) If the number of bacteria doubles every 157 minutes
![\begin{gathered} (2363\cdot2)=2363(b^(157)) \\ (2363\cdot2)=2363(b^(157)) \\ 4726=2363b^(157) \\ \text{divide both sides by }2363 \\ (4726)/(2363)=(2363b^(157))/(2363) \\ 2=b^(157) \\ 2^{((1)/(157))}=(b^(157))^{(1)/(157)} \\ 1.00442471045\text{ =b} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f6x920hh44sf7x48jril3m7rqh2ml7zs8y.png)
so, the function is
![y=2363(1.00442471045)^x](https://img.qammunity.org/2023/formulas/mathematics/college/qgrhrl768rv7j7mykdvhkogubjwa1zpzu7.png)
Step 2
what will the population be 314 minutes from now?
Let
time=x =314
replace
![\begin{gathered} y=2363(1.00442471045)^x \\ y=2363(1.00442471045)^(314) \\ y=2363\cdot4 \\ y=9452 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/prltqm6ka6gxruq0dqvx4jek9h91oq6sem.png)
therefore, the answer is
9452
I hope this helps you