Given:
![y=-(x)/(3)-1](https://img.qammunity.org/2023/formulas/mathematics/college/azwpftj6jmuevldfalw3zlvgxcr758abhu.png)
We have the graph below:
To determine the correct ordered pairs, let's solve for each of them.
a) (x, y) ==> (0, -1)
From the equation, substitute 0 for x and -1 for y:
![\begin{gathered} y=-(x)/(3)-1 \\ \\ -1=-(0)/(3)-1 \\ \\ -1=0-1 \\ \\ -1=-1 \\ \\ \text{Therefore (0, -1) is a solution} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s0e7o4ybn1b6gcwyr2b2wgcol12t5fy4xl.png)
b) (x, y) ==> (3, -2)
Substitute 3 for x and -2 for y:
![\begin{gathered} y=-(x)/(3)-1 \\ \\ -2=-(3)/(3)-1 \\ \\ -2=-1-1 \\ \\ -2=-2 \\ \\ (3,\text{ -2) is a solution} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g2f9rektxkqopebyseny5i963glpxxbfri.png)
c) (x, y) ==> (3, -5)
Substitute 3 for x and -5 for y:
![\begin{gathered} y=-(x)/(3)-1 \\ \\ -5=-(3)/(3)-1 \\ \\ -5=-1-1 \\ \\ -5=-2 \\ \\ (3,\text{ -5) is not a solution} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ahotfa39o6dji2e2yd9z5e9d73zvc1nqw0.png)
d) (0, -5)
Substitute 0 for x and -5 for y:
![\begin{gathered} y=-(x)/(3)-1 \\ \\ -5=-(0)/(3)-1 \\ \\ -5=0-1 \\ \\ -5=-1 \\ \\ (0,\text{ -5) is not a solution} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ccv4uycf10o5dephjynq9hze9ppaovxafh.png)
e) (x, y) ==> (-3, 0)
Substitute -3 for x and 0 for y:
![\begin{gathered} y=-(x)/(3)-1 \\ \\ 0=-(-3)/(3)-1 \\ \\ 0=1-1 \\ \\ 0=0 \\ \\ \text{The ordered pair (-3, 0) is a solution} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e123c16qfs4wuhy5w0f5of7fhum44qijaz.png)
ANSWER:
(0, -1)
(3, -2)
(-3, 0)