Given:
Four different equations are given
Required:
To tell Which equation represents a circle?
Step-by-step explanation:
The formula for the equation of a circle is (x – h)2+ (y – k)2 = r2, where (h, k) represents the coordinates of the center of the circle, and r represents the radius of the circle. If a circle is tangent to the x-axis this means it touches the x-axis at that point

That is others are in the form of ellipse equation.
How do you find the general form of an ellipse?
The equation of an ellipse written in the form (x−h)2a2+(y−k)2b2=1. The center is (h,k) and the larger of a and b is the major radius and the smaller is the minor radius.

else three options resemble with ellipse equation
Required answer:
