Given:
The height equation is,
![h(t)=-16t^2+144t+6](https://img.qammunity.org/2023/formulas/mathematics/college/mofjd4etxklgo5qqo103gdfs8rnjd2gq55.png)
Step-by-step explanation:
For maximum/minimum of a function, the first derivative of function is 0.
Differentiate the function with respect to x.
![\begin{gathered} (d)/(dt)h(t)=(d)/(dt)(-16t^2+144t+6) \\ =-32t+144 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8hy1e8kjcnrrnvujnwz2ilde88831pufjm.png)
For maximum and minimum,
![\begin{gathered} -32t+144=0 \\ t=(144)/(32) \\ =4.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k8jaxohec9dky9r5gcyc07eyteyhjx4vly.png)
So rocket reach it maximum height after 4.5 seconds of launch.
Substitute 4.5 for t in the equation to determine the maximum reached by rocket.
![\begin{gathered} h(4.5)=-16(4.5)^2+144\cdot4.5+6 \\ =-324+648+6 \\ =330 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7hrf85yxg48kme3ju2vcime2codnr6izrw.png)
So maximum height of rocket is 330 feet.