SOLUTION
We want to factor the polynomial
![s^2+12s+32](https://img.qammunity.org/2023/formulas/mathematics/college/w6jnsy3jaugjmcxeyqhcyuj3hgiqhs8p47.png)
To do this we look for two values with s such that when we multiply them, we get 32 and when we add then we get the middle item 12s.
These are 8s and 4s because
![\begin{gathered} 8s+4s=12s \\ 8s*4s=32s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5in3kypzy7ezitbplmlf5rq7srk26gfd4f.png)
Now we replace 8s and 4s with the middle item and factorize, we have
![\begin{gathered} s^2+12s+32 \\ s^2+8s+4s+32 \\ s(s+8)+4(s+8) \\ (s+4)(s+8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zig3ztf47o08nmfxe85988qkymvhchxa75.png)
Hence the answer is
(s + 4) (s + 8)