Given the side lengths of some triangle:
![\begin{gathered} L_1=84 \\ L_2=96 \\ L_3=60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dnvvvd5kraq4bcooxzfhotccu3it3l8sun.png)
Let us suppose that there exists another triangle with these side lengths:
![\begin{gathered} L_1^(\prime)=84 \\ L_2^(\prime)=96 \\ L_3^(\prime)=60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gbwwp9hrbsguj36gaj2qnxlzyt8pyz17ks.png)
Based on these, we can say that:
![\begin{gathered} L_1\cong L_1^(\prime) \\ L_2\cong L^(\prime)_2 \\ L_3\cong L^(\prime)_3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k6x10ru1lfw1ppxq3jd0ups0jur4xsrjew.png)
Then, using the Side-side-side theorem, we conclude that both triangles are congruent, so this triangle is unique