12.8k views
5 votes
For positive acute angles A and B, it is known that sin A= 7/25 and cos B= 21/29. Find the value of sin(A + B) in simplest form.

User Widget
by
8.0k points

1 Answer

3 votes

Answer

sin A = 7/25

cos B = 21/29

To find sin(A + B), we use double angle formula.

sin(A + B) = sin A cos B + sin B cos A

sin A = 7/25 , cos B = 21/29

From trigonometric identity, sin²θ + cos²θ = 1

cos A = √(1 - sin²A) = √(1 - (7/25)²)

cos A = √(1 - (49/25))

cos A = √(576/625)

cos A = 24/25

Also, sin B = √(1 - cos²B) = √(1 - (21/29)²)

sin B = √(1 - (441/841))

sin B = √(400/841)

sin B = 20/29

Recall that sin(A + B) = sin A cos B + sin B cos A

sin (A + B) = (7/25 x 21/29) + (20/29 x 24/25)

sin (A + B) = (147/725 + 480/725)

sin (A + B) = (147 + 480)/725

sin (A + B) = 627/725

User Maraca
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories