First, write the quadratic equation in standard form. Then, use the quadratic formula to find the solutions for the quadratic equation.
Remember that if a quadratic equation is written in standard form:

Where a, b and c are constants, then the solutions for x are given by:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
Starting with the given equation:

Substract 17 from both members to write the equation in standard form:

Use the quadratic formula, setting a=1, b=2 and c=-16:
![\begin{gathered} x=\frac{-(2)\pm\sqrt[]{(2)^2-4(1)(-16)}}{2(1)} \\ =\frac{-2\pm\sqrt[]{4+64}}{2} \\ =\frac{-2\pm\sqrt[]{68}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bf5ohp4fml9562jtp5fyg785gg8pzm77hj.png)
Simplify the expression using the properties of radicals. Since 68 is equal to 4 times 17, then:
![\begin{gathered} x=\frac{-2\pm\sqrt[]{68}}{2} \\ =\frac{-2\pm\sqrt[]{4\cdot17}}{2} \\ =\frac{-2\pm\sqrt[]{4}\cdot\sqrt[]{17}}{2} \\ =\frac{-2\pm2\cdot\sqrt[]{17}}{2} \\ =\frac{2(-1\pm\sqrt[]{17})}{2} \\ =-1\pm\sqrt[]{17} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x9s6zqnx7dks1f2zwezjaqjl20yv2fz1wp.png)
Therefore, the solutions for x in the given equation are:
![\begin{gathered} x_1=-1+\sqrt[]{17} \\ x_2=-1-\sqrt[]{17} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/83jdvbo7ogtmnp2hyanngmub3ne2kqqp5w.png)