We will use the law of sines and law of cosines shown below
![\begin{gathered} c=√(a^2+b^2-2ab\cos C)\rightarrow\text{ law of cosines} \\ and \\ (sinA)/(a)=(sinB)/(b)=(sinC)/(c)\rightarrow\text{ law of sines} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hs8x8w5b0h1224zjmoq20tzzyggulnn2ky.png)
Therefore, in our case, finding side c.,
![\begin{gathered} a=28,b=13,C=49\degree \\ \Rightarrow c=√(784+169-2*28*13cos(49\degree)) \\ \Rightarrow c\approx21.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/93j644p2b8scvgnbei0eeqezbb5cemaw46.png)
Thus, side c is approximately 21.8km.
Finding the missing angles using the law of sines,
![\begin{gathered} A=\cos^(-1)((c^2+b^2-a^2)/(2bc)) \\ \Rightarrow A=\cos^(-1)((21.8^2+13^2-28^2)/(2*13*21.8)) \\ \Rightarrow A\approx104.3 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fuwgik81w4ea809m1legiao2h97si8ds3b.png)
Similarly, in the case of angle B,
![sinB=(13)/(21.8)sin(49\degree)\approx26.7\degree](https://img.qammunity.org/2023/formulas/mathematics/college/39t4uphlsc3xc62gax73y4y4slip3btw7q.png)
Therefore, the answers are
c=21.8km,