hello
to solve this question, we have to understand that a soccer field is rectangular in shape and we can find this length from factoring the area
formula of area of a rectangle
![\begin{gathered} A=L* W \\ A=\text{area} \\ L=\text{length} \\ W=\text{width} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tw3sgld46p0h33j647pd3aqz6fz617wmae.png)
![\begin{gathered} A=24x^2+100x+100 \\ W=4x+10 \\ L=\text{ ?} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wrxv5r4w55i6hev6hmmhcjmiwgl20nhinj.png)
we can proceed to solve this by dividing the polynomial or simply checking it from the options
from the options given,
we have option A
3x + 10
let's multiply both the L and W to see if it gives us the answer
![(4x+10)*(3x+10)=12x^2+70x+100_{}](https://img.qammunity.org/2023/formulas/mathematics/college/wadvuejpjrj6roc4r6p2d0x1osbgbpu35b.png)
option A is incorrect
let's test for option B
L= 6x + 10
![\begin{gathered} A=L* W \\ (6x+10)*(4x+10)=24x^2+100x+100_{} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r7byrdetv5p83m46hj50ar4j2v011lkqil.png)
option B is correct
let's test for option C
L= 6x + 1
![\begin{gathered} A=L* W \\ (6x+1)*(4x+10)=24x^2+70x+10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kgga26sq6ubjgmwan6kif9kd92jyglf9ku.png)
option C is also incorrect and so it'll be for option D
from the calculations above, only option B corresponds with the value of length for the soccer field