Answer:
• D=249
,
• Two real numbers zeros
Step-by-step explanation:
Given the quadratic function:
![f\mleft(x\mright)=4x^2-17x+3](https://img.qammunity.org/2023/formulas/mathematics/college/33tbk0r5d4atdh0r9xvm26o2qx6fl3x9uo.png)
a=4, b=-17, c=3
The discriminant is obtained using the formula:
![\begin{gathered} D=b^2-4ac \\ =(-17)^2-4(4)(3) \\ =289-48 \\ =249 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xh2qza9u6p5qo6tkxcdi4hiyro29klzzyc.png)
Since the discriminant is greater than 0, the equation has 2 real solutions (or zeros).
Note:
• If D<0, the equation has 0 real solutions.
,
• If D=0, the equation has 1 real solution.