In this case, the order doesn't matter and the colors cant be repeated.
Now, we need to use the permutation formula:
![P(n,r)=(n!)/((n-r)!)](https://img.qammunity.org/2023/formulas/mathematics/college/170pla3corn04wg1ticowtzmft4fq84s20.png)
Where n represents the total different available colors and r is equal to
the number of doors.
Replacing on the permutation formula:
![P(10,3)=(10!)/((10-3)!)](https://img.qammunity.org/2023/formulas/mathematics/college/aoxhwjzb9bri2ilx9a7jahggzc3guejmos.png)
![P(10,3)=(10!)/(7!)](https://img.qammunity.org/2023/formulas/mathematics/college/lwyltgoe12c0e7zvl49u5pdx989r0lmr32.png)
![P(10,3)=(10x9x8x7!)/(7!)](https://img.qammunity.org/2023/formulas/mathematics/college/2uooadgv7897e4ea3skd144ebd6wjzynqc.png)
![P(10,3)=10x9x8!](https://img.qammunity.org/2023/formulas/mathematics/college/llrdw45mcvztuirpqmiaplwo8shajbzeze.png)
Then
![P(10,3)=(10x9x8x7!)/(7!)](https://img.qammunity.org/2023/formulas/mathematics/college/2uooadgv7897e4ea3skd144ebd6wjzynqc.png)
![P(10,3)=720](https://img.qammunity.org/2023/formulas/mathematics/college/1dfywp6pa85honjipdltsyidowcm6sbpon.png)
Hence, there are 720 possible arrangements for the doors.