Graph the parabola
![\begin{gathered} y=x^2-10x+27 \\ f(x)=ax^2+bx+c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aogy7k4shtm6v9lf2b6tp8p8mdro4ubw47.png)
In order to find the vertex (h,k), we can use this formula
![\begin{gathered} h=(-b)/(2a) \\ k=f(h) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f1ge5ypsy4ovqdwi8a1hqk2p8atlqh03k3.png)
where,
a = 1
b = -10
c = 27
then, the vertex (h,k) is
![\begin{gathered} h=-(-10)/(2\cdot1)=(10)/(2)=5 \\ k=f(5)=5^2-10\cdot5+27=25-50+27=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/19m40irwayfj0z57168fdj7fcjfo2uru69.png)
Therefore, vertex is the point (h,k) = (5,2)
Now, we just need two points to the left and two points to the right of this point
for example, when x = 3, then y = 6
![f(3)=3^2-10\cdot\: 3+27=6](https://img.qammunity.org/2023/formulas/mathematics/college/fe3i2ayjhlg68uyi7n8fc16ajs7q6qobra.png)
when x = 4, then y = 3
![f(4)=4^2-10\cdot\: 4+27=3](https://img.qammunity.org/2023/formulas/mathematics/college/9w28ta9e4eymhzi8ftlkiveb6l9d8i48h3.png)
when x = 6, then y = 3
![f(6)=6^2-10\cdot\: 6+27=3](https://img.qammunity.org/2023/formulas/mathematics/college/97mwfje13sda28r8mk3es8xgms5p4c2334.png)
when x = 7, then y = 6
![f(7)=7^2-10\cdot\: 7+27=6](https://img.qammunity.org/2023/formulas/mathematics/college/fbftpckl6xqdhm4xq97jlhexmkkkmgudhx.png)
Thus, the set of 5 points is the following:
![(3,6),(4,3),(5,2),(6,3),(7,6)](https://img.qammunity.org/2023/formulas/mathematics/college/98asy85aq7aohzn6no8vwpmlffiepteckw.png)