Given function:
![f(x)=xe^x](https://img.qammunity.org/2023/formulas/mathematics/college/z8ua5lr30v0tym6r7m4mqt9qmqynvwgg3i.png)
The minimum value of the function can be found by setting the first derivative of the function to zero.
![f^(\prime)(x)=xe^x+e^x](https://img.qammunity.org/2023/formulas/mathematics/college/yj26bejfaa34pxxls98g9jktftku7y99eo.png)
![\begin{gathered} xe^x+e^x\text{ = 0} \\ e^x(x\text{ + 1) = 0} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1qbfci6kchn3imbilcv5f85y1hojze2xzg.png)
Solving for x:
![\begin{gathered} x\text{ + 1 = 0} \\ x\text{ = -1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pdubygiyqd728pwm4lu8hkszg6p8m2f61s.png)
![\begin{gathered} e^x\text{ = 0} \\ \text{Does not exist} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jryqg5qxxbpjohbfpr69itzelwh8go1fad.png)
Substituting the value of x into the original function:
![\begin{gathered} f(x=1)=-1* e^{^(-1)}_{} \\ =\text{ -}0.368 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n82wajl4u01vd89hyiwxnrnyp8po4e80qp.png)
Hence, the minimum value in the given range is (-1, -0.368)