We are given that lines HJ and KM are parallel. We notice that the angles:
![\begin{gathered} \angle KLN \\ \angle HIL \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tpcostvc5gwd5p9i08rn91qan5s3zh5vvr.png)
Are corresponding angles, and therefore they are congruent, that is:
![\angle KLN\cong\angle HIL](https://img.qammunity.org/2023/formulas/mathematics/college/pn8lzn0suuwglvtlfha0ckhas2qf9gj9ir.png)
Also, angles:
![\begin{gathered} \angle HIL \\ \angle JIG \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e6zvie8vls6tcv7weev2scw8c9f99vb4uh.png)
Are vertical angles, therefore, they are equal:
![\angle HIL\cong\angle JIG](https://img.qammunity.org/2023/formulas/mathematics/college/t8r0yofx15j7t7pquxjk3mf85sksnlxr7d.png)
Therefore, combining the two statements we get:
![\angle KLN\cong\angle JIG](https://img.qammunity.org/2023/formulas/mathematics/college/jckuvreka43b0skza1prubzm5hxut9fmyf.png)
Therefore:
![\angle KLN=43](https://img.qammunity.org/2023/formulas/mathematics/college/u6rtuzhln5w51f6oo0w6ucmwlckemqm88n.png)
Angle KLN equals 43 degrees.