Answer:
y=2x+8
Explanation:
Given the two points:
![\begin{gathered} (x_1,y_1)=(-2,4) \\ \mleft(x_2,y_2\mright)=\mleft(1,10\mright) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jvjccd79hyaosxi7podditm73skvz6ybwg.png)
In order to find the equation of the line connecting them, we employ the use of the two-points formula given below:
![(y-y_1)/(x-x_1)=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/3wt52xf3n7hjhwt6qolt0l02t41489sre0.png)
Substitute the values:
![(y-4)/(x-(-2))=(10-4)/(1-(-2))](https://img.qammunity.org/2023/formulas/mathematics/college/5jlllt6l7soymycoyh9g94y27ojv1y3m3j.png)
Next, simplify:
![\begin{gathered} (y-4)/(x+2)=(6)/(3)=2 \\ \implies y-4=2(x+2) \\ \implies y=2(x+2)+4 \\ \implies y=2x+4+4 \\ \implies y=2x+8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l8yskojgt8wvrq8idvufx3k82udq199llb.png)
The equation containing the points (-2,4) and (1,10) is y=2x+8.