Let 'x' be the number of calories per cup of popcorn, and 'y' be the number of calories per ounce of soda.
Given that 3 cups of popcorn and 6 oz of soda constitute 246 calories,
![3x+6y=246](https://img.qammunity.org/2023/formulas/mathematics/college/5dj3fo39pylokmormimh0k307dsipuiatj.png)
Also given that 1 cups of popcorn and 14 oz of soda constitute 274 calories,
![x+14y=274](https://img.qammunity.org/2023/formulas/mathematics/college/6pj776a1bfzajtfgwiv1zk1rzqor129tf2.png)
Solve the equations using Elimination Method.
Subtract 3 times equation 2 from equation 1,
![\begin{gathered} (3x+6y)-3(x+14y)=246-3(274) \\ 3x+6y-3x-42y=246-822 \\ -36y=-576 \\ y=16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/32dx26i8ixv7ct73ho0uz89hpdhce22j2m.png)
Substitute this value in equation 1, to obtain 'x' as,
![\begin{gathered} 3x+6(16)=246 \\ 3x+96=246 \\ 3x=150 \\ x=50 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bihcnm0f9zpjywmxm9jgdf7aa0fppp4tcp.png)
Thus, the solution of the system of equations is x=50 and y=16.
Therefore, there are 50 calories per cup of popcorn, and 16 calorie per ounce of soda.