Given:
Two circuits with multiple resistors
To find:
The net resistance of the circuits
Step-by-step explanation:
For the first circuit
The equivalent series resistance of the 1 and 2 is,
![\begin{gathered} R_1+R_2 \\ =20+16 \\ =36\text{ ohm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/45npmt57p1x75iueroja76s8h6u9lait60.png)
The equivalent series resistance of the 4 and 5 is,
![\begin{gathered} 10+14 \\ =24\text{ ohm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/gpmdofaoypso5nhdcy95j4xbvdmvpe8cu3.png)
The net resistance of the resistances is,
![\begin{gathered} (1)/(R)=(1)/(36)+(1)/(24)+(1)/(12) \\ (1)/(R)=(11)/(72) \\ R=(72)/(11)\text{ohm} \\ R=6.54\text{ ohm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/nqgjwoeg4drgldgucexxmfm9o5zv6ubiwb.png)
Hence, the net resistance of the upper circuit is 6.54 ohms.
For the circuit below:
![R_2,\text{ R}_3,\text{ R}_4\text{ are in series}](https://img.qammunity.org/2023/formulas/physics/college/qw2fsurof43g9hm1xax16u3idileiwtfns.png)
So, the equivalent resistance is,
![\begin{gathered} R_2+R_3+R_4 \\ =2+2+2 \\ =6\text{ ohm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/d35y9350jl1if49maazq228uou15adz0pe.png)
This equivalent resistance in parallel with
![R_5](https://img.qammunity.org/2023/formulas/physics/college/yczi2w9z7knma6c964n74s08g6ledayze9.png)
So, the equivalent resistance is,
![\begin{gathered} (6*2)/(6+2) \\ =1.5\text{ ohm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ahoc533hhldzug9lztxkusf2dp7j83ydcs.png)
Now 1.5 ohm is in series with the rest two resistances.
So, the net resistance is,
![\begin{gathered} R_1+R_6+1.5 \\ =2+2+1.5 \\ =5.5\text{ ohm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/r9oe42jxhznaclvbtphznyqgkmmlr4atci.png)
Hence, the net resistance of the circuit below is 5.5 ohms.