Answer:
Step-by-step explanation:
In problem 5, we can see that there is a right triangle with legs x and 16 and a hypotenuse equal to (x + 8).
So, by Pythagorean theorem, we can write the following equation
![(x+8)^2=x^2+16^2](https://img.qammunity.org/2023/formulas/mathematics/college/pegh3k8hqssok1h4mbm08ciqow0sy78mpl.png)
Now, we can expand the left side
![\begin{gathered} x^2+2(8)(x)+8^2=x^2+16^2 \\ x^2+16x+64=x^2+256 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1g8bsnu11g0fr21yvc7ot7vdg6b3z69vri.png)
Then, subtract x² from both sides
![\begin{gathered} x^2+16x+64-x^2=x^2+256-x^2 \\ 16x+64=256 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/asp705q6o72kz1eq6kw4nmo48yddd6okej.png)
Subtract 64 from both sides
![\begin{gathered} 16x+64-64=256-64 \\ 16x=192 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4tggrtbuqtdjozy3a74szympy102d6lkir.png)
Finally, divide by 16
![\begin{gathered} (16x)/(16)=(192)/(16) \\ \\ x=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/khxl623o4ar5anviv9i4y53o7wterckhdw.png)
Therefore, the value of x is 12