Answer:
1287
Step-by-step explanation:
The number of distinct ways n objects can b selected from N total objects is given by
![(N!)/(n!(N-n)!)](https://img.qammunity.org/2023/formulas/mathematics/college/696rp43sckzexbjetovbw80ilqdh6vzevl.png)
Now in our case, we have a total of 13 basketball players. N = 13 and 5 players to choose n = 5. Therefore, the above formula gives
![(13!)/(5!(13-5)!)](https://img.qammunity.org/2023/formulas/mathematics/college/gta8l2engvdhojjgxx0tksdq53v2jsg7nd.png)
![-(13!)/(5!8!)](https://img.qammunity.org/2023/formulas/mathematics/college/v5eqaohxr9idz67f3er18qm43jbad2ufr0.png)
![=(13\cdot12\cdot11\cdot10\cdot9\cdot8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1)/(5!\cdot8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1)](https://img.qammunity.org/2023/formulas/mathematics/college/b7jcaey25tywg64cmriakdwk8t8yz9qhol.png)
![=(13\cdot12\cdot11\cdot10)/(5!)](https://img.qammunity.org/2023/formulas/mathematics/college/2kjoydqa5ocmvimd80zgrc9pbjw4h9f27l.png)
![=(13\cdot12\cdot11\cdot10)/(5\cdot4\cdot3\cdot2\cdot1)](https://img.qammunity.org/2023/formulas/mathematics/college/4uypli87cjkco8mq9f85gm768jae5kqvcm.png)
![=1287](https://img.qammunity.org/2023/formulas/mathematics/college/fj4osxpp6seek2z5261n3vc77htz16rc1d.png)
Hence, there are 1287 ways 5 different players can be selected from 13 players.