Given:
The volume is decreasing at the rate of 3 cm^3 per hour.
The volume of the left ice is 8 cm^3.
Aim:
We need to find the rate of change of the side of the cube.
Step-by-step explanation:
Let the length of the cube is denoted as s.
Consider the volume of the cube.
![V=s^3](https://img.qammunity.org/2023/formulas/mathematics/college/s99b7yex3i2xgsinpjj9mnjujocnckvvdc.png)
Since the volume is decreasing at the rate of 3 cm^3 per hour. we can write,
![(dV)/(dt)=-3cm^3\/h](https://img.qammunity.org/2023/formulas/mathematics/college/45k5f1b067j57txwe3ehz6bnus1r45z968.png)
where t represents time and the negative sign represents decreasing.
Differentiate the volume with respect to s.
![(dV)/(ds)=(d)/(ds)(s^3)=3s^2](https://img.qammunity.org/2023/formulas/mathematics/college/kxds2m7j1k2mz7rzceyb2wrbqp10fkhvfz.png)
To find the rate of change of the side length, we use the chain rule.
![(dV)/(dt)=(dV)/(ds)(ds)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/college/yih9cwggnhik1x7v7xfck9m7zrbx07pcl0.png)
![\text{ Substitute }(dV)/(dt)=-3\text{ and }(dV)/(ds)=3s^2\text{ in the equation.}](https://img.qammunity.org/2023/formulas/mathematics/college/rwiz507yzo317n6woblvd26qx8qpvwe8nw.png)
![-3=(ds)/(dt)(3s^2)](https://img.qammunity.org/2023/formulas/mathematics/college/3anq9625xpj777pmvi6dzws07bf0cnm55a.png)
![-(3)/(3s^2)=(ds)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/college/7upvikpvhqfx4ly0jmalk21cpta4wu7ccv.png)
![-(1)/(s^2)=(ds)/(dt)](https://img.qammunity.org/2023/formulas/mathematics/college/rlinmr5cvg54x7le6v9epi5pu4czfn4ezc.png)
Since the left ice is 8 cm ^3.
![V=(s)^3=8](https://img.qammunity.org/2023/formulas/mathematics/college/84uzjsb7thj8tl4bubruyvhflvmcy69v8i.png)
![s^3=2^3](https://img.qammunity.org/2023/formulas/mathematics/college/rlrmemun357guaqqtvgzjyxf5gu9oj3os1.png)
![s=2cm](https://img.qammunity.org/2023/formulas/mathematics/college/kw478z4i6tuwjjdqtpcj03dwqr3mk9fcrb.png)
![Substitute\text{ s =2 in the equation}-(1)/(s^2)=(ds)/(dt).](https://img.qammunity.org/2023/formulas/mathematics/college/8qadyfg4l2lxstdn8xlm5drxnu436yxgd0.png)
![-(1)/(2^2)=(ds)/(dt).](https://img.qammunity.org/2023/formulas/mathematics/college/marwjksl0ndm2ekt3n8oy18fmto0tpz76o.png)
![(ds)/(dt)=-(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/eg6398gu8yzhtuv2mcfb2zr0qzzkvs3z4d.png)
![(ds)/(dt)=-0.25cm\text{ per hour}](https://img.qammunity.org/2023/formulas/mathematics/college/h4bckib78fdnt0otg0z2674g78lhc7ks0e.png)
Verification:
Let s =2 cm, then the volume is 8cm^3.
Let s =1.75cm, the volume is