Answer:
2x + h
Step-by-step explanation:
Given the following functions
f(x) = 2x - 1
g(x) = x^2 - 2
We are to simplify the expressionn:
![(g(x+h)-g(x))/(h)](https://img.qammunity.org/2023/formulas/mathematics/college/axdf6xefmw9fe5w8y20p7j4opq0to5wbu5.png)
Substitute the given functions into the expression and simplify
![\begin{gathered} (\lbrack(x+h)^2-2\rbrack-(x^2-2))/(h) \\ \frac{\lbrack\cancel{x^2}^{}+2xh+h^2-\cancel{2}-\cancel{x^2}^{}+\cancel{2}}{h} \\ (2xh+h^2)/(h) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ts9itpm903pi2gv0hsghzpdrj2d47zy3b5.png)
Factor out "h" from the numerator to have:
![\begin{gathered} \frac{\cancel{h}(2x+h)}{\cancel{h}} \\ 2x+h \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gq9y8nfslbdgcmrwn438o9xoq906ugch9x.png)
Hence the simplified form of the expression is 2x + h