44.9k views
0 votes
A line that passes through points (2, 40) and (20, 4)

User Leet
by
7.8k points

1 Answer

1 vote

Answer

y - 40 = -2 (x - 2)

We can simplify this

y - 40 = -2x + 4

y = -2x + 4 + 40

y = -2x + 44

Step-by-step explanation

The general form of the equation in point-slope form is

y - y₁ = m (x - x₁)

where

y = y-coordinate of a point on the line.

y₁ = This refers to the y-coordinate of a given point on the line

m = slope of the line.

x = x-coordinate of the point on the line whose y-coordinate is y.

x₁ = x-coordinate of the given point on the line

We need to calculate the slope and to use one of the points given as (x₁, y₁)

For a straight line, the slope of the line can be obtained when the coordinates of two points on the line are known. If the coordinates are (x₁, y₁) and (x₂, y₂), the slope is given as


Slope=m=\frac{Change\text{ in y}}{Change\text{ in x}}=(y_2-y_1)/(x_2-x_1)

(x₁, y₁) and (x₂, y₂) are (2, 40) and (20, 4)


\text{Slope = }(4-40)/(20-2)=(-36)/(18)=-2

Slope = m = -2

(x₁, y₁) = (2, 40)

x₁ = 2, y₁ = 40

y - y₁ = m (x - x₁)

y - 40 = -2 (x - 2)

We can simplify this

y - 40 = -2x + 4

y = -2x + 4 + 40

y = -2x + 44

Hope this Helps!!!

User Dmytro Ovdiienko
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories