Given: An equation-
![y=(10x+2)^x](https://img.qammunity.org/2023/formulas/mathematics/college/jryzero5123uqmz0y9ll7rya9ljqp89wn2.png)
Required: To determine the differentiation of y with respect to x.
Explanation: The differentiation of a logarithmic function is-
![\begin{gathered} y=a^x \\ (dy)/(dx)=a^x\ln(a) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nw6ur9gsghmded468oe4ucvqzqihd8uusn.png)
Taking log both sides on the given equation as-
![\begin{gathered} \ln y=\ln(10x+2)^x \\ =x\ln(10x+2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qjsohfozd1bzwx780equhye7pog50ri3o6.png)
Now, differentiating with respect to x using product rule as-
![(1)/(y)(dy)/(dx)=\ln(10x+2)(d)/(dx)(x)+x(d)/(dx)\ln(10x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/khpl7gtl8i8n3xttp524btfhz8wsb0351r.png)
Further simplifying as-
![(dy)/(dx)=y[\ln(10x+2)+(10x)/(10x+2)]](https://img.qammunity.org/2023/formulas/mathematics/college/zt7sxu74qrqwqpulyy68y72lqfvrn8xppn.png)
Substituting the value of y as-
![(dy)/(dx)=(10x+2)^x[\ln(10x+2)+(10x)/(10x+2)]](https://img.qammunity.org/2023/formulas/mathematics/college/mrs6pd300jdlaqyaysrt6yij9cu08lkk0y.png)
Final Answer: Option D is correct.